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Abstract 

In this report, we consider the performance of trellis coded multilevel 

differential phase-shift-keying (MDPSK) over Rician and Rayleigh fading 

channels. For operation at L-Band, this signaling technique leads to a more 

robust system than the coherent system with dual pilot tone calibration 

previously proposed for UHF. The results are obtained using a Combination of 

analysis and simulation. The analysis shows that the design criterion for 

trellis codes to be operated on fading channels with interleaving/ 

deinterleaving is no longer free Euclidean distance. The correct design 

criterion for optimizing bit error probability of trellis coded MDPSK over 

fading channels will be presented along with examples illustrating its 

application. 
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I. Introduction 

In a previous report [l], the authors considered the performance of 

trellis coded multilevel phase-shift-keying (MPSK) when transmitted over a 

fading mobile satellite channel. Such a channel is characterized by Rician 

fading which can be described by a single parameter K corresponding t o  the 

ratio of power in the total coherent (direct plus specular) component to that 

in the noncoherent (diffuse) component. 

the assumption of ideal coherent detection, i.e., the effect of the fading on 

the phase of the received signal was fully compensated f o r  at the receiver. 

Thus, the numerical results derived from this analysis reflected only the 

degradation due to the effect of the fading on the amplitude of the received 

signal . 

The analysis was carried out under 

Although most of the discussion and numerical results presented in [ l ]  

pertained to this idealistic assumption, mention was made of the fact that, in 

an actual implementation, the carrier demodulation function would typically be 

performed using pilot tone calibration techniques [ 2 ,  31 .  Assuming a dual 

tone calibration technique [4] wherein two tones of equal power are inserted 

symmetrically at the edges of the data spectrum for the purpose of deriving a 

coherent demodulation reference, simulation results presented in [l] showed 

that the noisy carrier reference so produced resulted in a signal-to-noise 

ratio degradation of about 2 to 3 dB depending on the value of the Rician 

parameter K. This rather large degradation is caused by the fact that the 

bandwidth of the pilot tone bandpass filters has to be chosen wide enough t o  

accommodate the maximum doppler (on the order of 100 Hz at UHF for a land 

mobile vehicle travelling at 80 mph) and that some of the total transmitted 

power has to be allocated to the two pilot tones thus robbing the data-bearing 

signal. 

1 



Under these circumstances, it is reasonable to consider the performance 

of trellis coded multilevel differential phase-shift-keying (MDPSK) with the 

hope that the performance penalty associated with the differential detector 

will not exceed that due to the noisy carrier demodulation reference in the 

coherent system. If this is indeed true (as we will be shown in this report), 

then the MDPSK system has a decided implementation advantage over the coherent 

MPSK one in that a means for extracting a carrier demodulation reference does 

not have to be provided. The results will be obtained using a combination of 

analysis and simulation. Also ,  as in [ l ]  we shall consider only the case 

where interleaving/deinterleaving is employed to combat the fading. This 

allows for considerable simplification of the analysis and is of great 

practical interest. 

11. System Model 

Figure 1 is a simplified block diagram of the system under investigation. 

Input bits representing data or digitally encoded speech and occurring at a 

rate \ are passed through a rate n/(n + 1) trellis encoder producing an 

encoded symbol stream at a rate [(n + l)/n]R The encoder output symbols 

are then block interleaved to break up burst errors caused by amplitude fades 

of duration greater than one symbol time. 

b' 

While in practice the depth of interleaving is finite and chosen in 

relation to the maximum fade duration anticipated which in turn is related t o  

the maximum doppler frequency produced by the mobile's movement, we shall make 

the usual assumption of infinite interleaving depth. Our simulation results 

will, however, reflect a finite interleaving depth necessitated by practical 

limitations on the total coding/decoding delay in a speech transmission system 

1 
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[ l ] .  Thus, these results will be slightly pessimistic when compared with 

those derived from theory. The primary purpose of the analysis is to indicate 

through simple example the trend of the performance behavior as a function of 

the various system parameters leaving the actual numerical performance t o  be 

predicted by the software simulations. 

The interleaved trellis-encoded symbols are next mapped, in groups of 

n + 1, into an M = 2" + 1 - level PSK signal set according to the set 

partitioning method [ 5 ] .  The MPSK symbols are then differentially encoded and 

modulated onto an RF carrier for transmission over the channel. Since the 

MDPSK symbol rate is \/n, it is reasonable, from a conservation of 

bandwidth standpoint, to compare the performance of this system to an uncoded 

M = 2n - level DPSK system with the identical input bit rate. 
A t  the receiver, the faded, noise-corrupted signal is differentially 

detected and the resulting symbols are then deinterleaved. The trellis 

decoder is implemented as a Viterbi algorithm with a metric depending upon 

whether or not channel state information (CSI) is provided [ 6 ] .  A measure of 

CSI can be obtained from envelope detection of the received signal. 

In selecting a decoding metric, a tradeoff exists between simplicity of 

implementation and the optimality associated with the degree to which the 

metric matches the differential detector output statistics. For the case of 

uncoded MDPSK, a metric based on minimizing the distance between the received 

and transmitted signal vectors (equivalent to assuming Gaussian statistics as 

in the coherent MPSK analysis of [l]) is optimum in the sense of a minimum 

probability of error test. 

likelihood) metric would depend on the joint two-dimensional (amplitude and 

phase) statistics of a sequence of receptions. 

For the coded case, the optimum (maximum- 

3 



In this report, we shall consider both the maximum-likelihood (truly 

matched) and the much simpler to implement (and analyze) Gaussian metric. 

System performance results for the latter will be obtained through a 

combination of analysis and simulation. 

111. Analysis Model 

The basic analysis model for the block diagram of Figure 1 is illustrated 

in Figure 2 .  The box labelled encoder is actually the combination of the 

trellis encoder and the mapping function of Figure 1. We denote a coded 

symbol sequence of length N by 

x - = (XI, x2, ...., 5) (1 1 

where the kth element of x, namely x represents the transmitted MPSK 

symbol in the kth transmission interval and, in general, is a nonlinear 

function of the state of the encoder s and the n information bits 2, at its k 

input. Before transmission over the channel, the sequence 5 is differentially 

encoded producing the sequence y. In phasor notation, v and v can be 

written as 

k' - 

k k+l 

where E = nE is the energy per MDPSK symbol and 
S b 

( 3 )  

is the phasor representation of the MPSK symbol A 4  assigned by the 

mapper in the kth transmission interval. 
k 



Corresponding to x_, the channel outputs the sequence 

y = (Y19 Y2S . . * ' )  YN) ( 4 )  

where the k + 1st element yk+l, representing the output in the k + 1st 

transmission interval, is given by 

* - 
'k+l - Wk Wk+l 

Here N 

N(t) which represents the additive thermal noise at the receiver front end, 

and Xk, 

noise process X(t) 

Nk+l are samples of a stationary, complex Gaussian noise process k' 

are samples of a normalized, stationary, complex Gaussian 'k+l 
(independent of N(t)) which represents the fading 

characteristic of the mobile satellite channel. The first two moments of the 

random variables (r.v.'s) Xk and Nk are given by 

2 2 2 2  2 
E{\) = p ; E{lxkl } - 1p1 = ' ; + 1111 = 

Writing X in the phasor form k 

we see that p 

Rician probability density function (p.d.f.1 given by 

is a normalized (unit mean-squared value) r.v. with a k 

5 



where once again the parameter K represents the ratio of powers of the 

coherent to noncoherent fading components. Finally, if CSI is available, then 

the corresponding side information sequence g will be denoted by 

- 2 = (zl, z2, ..., zN) ( 9 )  

A s  previously stated, we shall assume infinite depth interleaving and 

deinterleaving so that the coding channel is memoryless. Under this 

assumption, the products p p are independent r.v.'s and hence the 

joint channel probabilities satisfy 

k k + l  

N 

n=1 

and 

N 

n=l 

IV. The Maximum-Likelihood Metric for Coded MDPSK 

For any coded communication system, the decoding process uses a metric of 

the form m(y,lf;g) if side information is available and m(y,x) if it is not. 

Whatever metric is selected, it is desirable from the standpoint of 

simplifying the decoding process that it have an additive property, namely 

that the total metric for a sequence of symbols is the sum of the metrics for 

each channel input and output pair, i.e., 



The maximum-likelihood metric 

m(y,g;z) = log PN(YIX,Z) (12a) 

when side information is available or 

m(y,x> = log pN(yIx) (12b) 

when no side information is available satisfies the requirement in (11). This 

is easily seen by substituting (10) in (11) and recalling that the logarithm 

of a product equals the sum of the logarithms. Thus, to evaluate (11) we need 

to obtain the marginal p.d.f. p(yn1xn,zn), take its logarithm, and sum 

the results. 

Assuming perfect side information, i.e., z = pn, the characteristic n 

function method is used in Appendix A to derive p(y Ix z ) with the result n n’ n 

2 

where J (x) is the zero order Bessel function of the first kind. The 

logarithm of (13) gives the maximum-likelihood branch metric 

m(ynlxn,zn) which is quite complicated to implement. 

theoretical analysis of the bit error probability performance of the system in 

Figure 1 with such a metric is difficult if not impossible. 

0 

Furthermore, 

For this reason, we turn our attention now to the much simpler Gaussian 

metric for which upper bounds on bit error performance can be readily 

computed. This approach is analogous to that taken in [ 7 1 .  

7 



V. Derivation of the Pair-Wise Error Probability Bound 

To find an upper bound on the average bit error probability performance 

of the system, we must first find the pair-wise error probability P ( x  + g) 
which represents the probability of choosing the coded sequence 5 = ( G l ,  G 2 ,  

..., G )  instead of 5 = (x  1’ X 2 ’  * . * ,  5). 
coding decision metric, i.e., 2 is incorrectly chosen as the transmitted 
sequence when m ( y , i ; g )  > m(y,x;g), then the pair-wise error probability has the 

Chernoff bound [61  

Letting m(y,x;g) denote the 

P(x + 5) 5 E{exp(X[m(y,ilg) - m(y,xlg)l) I?} 
1 

where the “E” operator denotes statistical expectation, X is the Chernoff 

parameter to be optimized, and q is the set of all n such that 

x # g. To simplify (4) any further, we must specify a particular n 

metric and whether or not channel state information is available. A s  

previously stated, we shall use the metric which is optimum (maximum- 

likelihood) for the additive Gaussian noise channel. 

case where CSI is absent. 

We begin by treating the 

A. No Channel State Information 

When no CSI is provided the Gaussian metric takes the form 

2 - . 2  Substituting (5) into (15) and noting from ( 3 )  that Ix I n 

independent of n, the difference of the metrics required in (14) becomes 

= IxnI = 1 

(15) 

8 



m(Yn,Gn' - m(yn,xn) = -Iwn-l w - 2 E f ; I  2 + i w  * w - 2 E x /  2 * 
s n  n-1 n s n  

* *.. * -  
= 2Es[w w (xn - xn) + w w (xn - x,)] 

n-1 n n-1 n 

which can be conveniently written in the matrix form 

where 

and "T" denotes the transpose operation. 

From (5) and (7) we have 

* j A+n 
w w =  + noise terms n-1 n pn-1Pn 2Ese 

Assuming that the fading is slow-varying enough that p 

substituting (17) into ( 1 4 )  gives 

- 
n-1 - Pnr 

(16) 

(19) 

where the expectation is now only over the additive noise, the overbar denotes 

statistical averaging over the fading, and 1' = 2E 1. 
S 

The expectation required in ( 2 0 )  was originally evaluated by Stein [8] 

and later by Johnston [71 in connection with the analysis of a block coded 

MDPSK system. In particular, f o r  any neq, 

9 
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where 1 is the identity matrix and 
- * 

0 (Et -Xn) n 

2 -x 0 I n n  

* 
Also, it should be noted that (17) is valid only when det(J + 2X'%%) > 0. 

After much manipulation, (21) evaluates to 



E{exp(X'CT(% - 7 l - n  A )W ) Xn'Pn) = 

L U 11 . 

2.. 2 1 - Ixn - Xnl 
(23) 

= X ' N O  = 2E N 1. 
s o  

where X 

One further simplification of (23) is possible for constant envelope 

signal sets such as MDPSK. In particular, it can easily be shown that 

* I" - xnl = -2Re{xn(in - xn) } (24) 

Si ihs t i t i i t inP  ( 2 4 1  i n t n  (21) and t h e n  i n t n  ( 2 0 )  p i v e s  the desired resiilt fnr 

It remains to average (25) over the p.d.f. of pn given in (8) and then 

optimize over the Chernoff parameter. 

Since we have.assumed that the fading is constant over two symbol 
2 intervals, i.e., 

interleavingldeinterleaving makes the p ' s  independent, then the average 

over e in (20) can, insofar as the upper bound is concerned, be computed as 

the product of the averages. Averaging each term in the product of (25) over 

the p.d.f. in (8) gives* 

p has been replaced by pn, and that the pn-1 n 

n 

*For simplicity of notation, we herein drop the zero subscript on X. 

11 



1 + K  

For the Rayleigh case (K = 0), ( 2 6 )  simplifies to 

I" - xnl 2 (1 - 4x1 

2 2 1 - (2x1 ]Gn - xnl 
2 2 1 - (21 )  I" - xnl 

1 

1 + I" - xnI (1 - 41) - (2X)2] ( 2 7 )  

The result in ( 2 6 )  cannot be optimized over X independent of the 

index n. Thus, for the Rician case, we first must compute the pair-wise error 

probability (or better yet , the average bit error probability) and then 

optimize over the Chernoff parameter. On the other hand, the result in ( 2 7 )  

can be optimized over X independent of n. 

X t o  maximize the term in brackets in the denominator of ( 2 7 ) .  

In particular, we wish to choose 

12 



Differentiating this expression with respect to X and equating the result t o  

zero give the optimum Chernoff parameter 

zs  NO x =  
Opt 1 + 2Es/N0 

Substituting (28) in (27) and simplifying give the upper bound on pair-wise 

error probability for the Rayleigh channel: 

where 

Es /No 
1 + Es/No 

v =  

(28) 

(30) 

1. Derivation of the Bit Error Probability Bound 

An upper bound on the average bit error probability is obtained from the 

pair-wise error probability bound as 

where a(g,g) is the number of bit errors that occur when 5 is transmitted and 

2 - is chosen by the decoder, p(x) - is the a priori probability of transmitting 5 

and %? is the set of all coded sequences. An efficient procedure for 

evaluating (31) is the transfer function bound approach taken in [91. In 

particular, the trellis code is represented by a pair-state transition 

diagram [ lo ] .  Each pair-state (sk,ik) corresponds to a pair of states s and k 

in the trellis diagram. Thus, a transition between pair states (sk,ik) and k 

13 



t i2 Since, for no fading, the factor D in ( 3 2 )  is analogous to the corresponding 

term in the product describing P(x - -  + k),  for the fading case we make the same 

association. In  particular, for a given branch label gain, D would be 6 2  

14 

~~~ ~ 

I . 

s ) in the transition diagram corresponds to a pair of transitions in (‘k+l’ ^k+l 

the trellis diagram, i.e., s 

of these trellis diagram transitions are an MPSK symbol being outputted by the 

mapper and a corresponding sequence of n input bits (an information symbol) to 

the encoder. Thus, the transition between two pair-states in the transition 

diagram is characterized by the squared Euclidean distance 6 2  between the 

corresponding MPSK output symbols and the Hamming distance Q between the 

corresponding input bit sequences. 

Associated with each k+l to s ~ + ~  and ik to k 

Based on the above discussion, in the absence of fading, each branch 

between pair states in the transition diagram has a gain G of the form 

I 

G =x$ I n D 62 
( 3 2 )  

Here I is an index, D is the Bhattacharyya distance defined by 

D = exp( 2) ( 3 3 )  

and the summation accounts f o r  t-.e possibility of parallel paths ,etween 

states in the trellis diagram. 

path gains) of the transition diagram is denoted by T(D,I) and, by comparison 

with (311 ,  the upper bound on average bit error probability is given by 

The transfer function (the sum of all possible 

1 

I 
! 
I 



replaced by (26) or (27) as appropriate with 

Euclidean distance between pair-states as discussed above. 

2. An Example 

- xnI representing the 

Consider the case of rate 1/2 trellis coded asymmetric QPSK using a 

simple 2-state trellis. The appropriate set partitioning is illustrated in 

Figure 3, the trellis diagram in Figure 4 ,  and pair-state transition diagram 

in Figure 5. The performance of this system in the absence of fading and with 

coherent detection was treated in [ 9 ]  with the following results: 

4 4a - - 
1 4  I lta. 1 1 %  4ac a = - D ; b = - D  , c = - D  
2 2 2 T(D,I) = -* 1 - 2b' 

Here a is the ratio of powers between the I and Q channels which is related 

to the angle 4 that defines the asymmetry (see Figure 3) by 

2 @  
2 a = tan 

(35) 

(35) 

Also, note the branch gains a, b y  and c are of the form in (32). 

(35) into (34) gives 

Substituting 

4 (  1+2a) 
1- D 

Pb L 2 

(1 - D') 

which when optimized over the asymmetry produces the desired upper bound 

P < - 27 exp(-2Eb/No) 
b - 4  

(37) 

(38)  

Based upon the above discussion, for differential detection in the presence of 

Rayleigh fading, the transfer function of (35) applies with, however, a, b, 

and c defined by 

15 
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I 2 a = 2'1 - u  ) 

2 1 1 - u  
' = z q  

Performing the differentiation required in ( 3 4 )  gives upon simplification 

2 

'b 5 l + a - u  2 

( 3 9 )  

For a symmetric QPSK signal set (a = I), ( 4 0 )  reduces to 

On the other hand, optimizing (40) with respect to a produces the optimum 

asymmetry condition 

which can then be substituted into ( 4 0 )  to give the optimized bit error rate 

performance bound. 

Illustrated in Figure 6 is the upper bound on bit error probability 

performance for the symmetric signal set as given by ( 4 1 )  and the comparable 

upper bound for the optimized asymmetric signal set as determined from (40) 

together with ( 4 2 ) .  

for ideal coherent detection as obtained in [l]. 

Also shown in this figure are the corresponding results 

Finally, the results for 



uncoded BPSK (same bandwidth as rate 1/2 trellis coded QPSK) are superimposed 

on the same figure. Although the performance of uncoded BPSK over a Rayleigh 

channel can be obtained in exact closed form, for fairness of comparison, the 

uncoded performance curves in Figure 6 are upper bounds determined from the 

same Chernoff bound approach as was used for the coded results. For MPSK, 

these bounds are mathematically given by 

M-1 

for differential detection and 

for coherent detection. When M=2 ( B P S K ) ,  these results simplify to 

1 + 2Eb/N0 2 P < 1 - u  = 
b -  (1 + Eb/N0I2 

and 

1 P <  
b -  1 + Eb/N0 

(43b) 

(44b 1 

We observe from Figure 6 the interesting result that, over the range of 
- 
Eb/NO considered, the differential detection results track the coherent 

detection results with a fixed &,/NO difference of about 1.5 dB for the 

coded cases and about 3 dB for the uncoded case. 

For differential detection in the presence of Rician fading, the transfer 

function of (35) is again applied with, however, a, b, and c now defined by 

17 



I c1 a = - E D  2 1  

2 1 + K + 6 ,  

- 
Eb 2 

NO 
2X -(1-4X) - (2x1 (l+K) 

I c 2  b = - [ D  2 2  

1 c 3  c = - < D  2 3  

where 

- 5, - 

J. - 

1 Ii - 
2 - (2X) (1+K) ; i = 1, 2, 3 

L 

with 

Once again performing the differentiation required in ( 3 4 )  and recalling that 

we must now also minimize over the Chernoff parameter X as well as the 

asymmetry parameter a, we get the following result: 

P < min 
- 110 

min 
a (1 - 52D';2)2 

Figure 7 is a plot of ( 4 8 )  versus Eb/No for a Rician parameter 

K = 10 (typical of the mobile satellite channel). A l s o  shown 

are the results for the symmetric signal set, i.e., the minimization over a 

in ( 4 8 )  is not performed; instead a = 1 is used. Finally, the upper bound 

on the performance of uncoded BPSK in the same environment, namely, 

i 

I 
I 
1 

18 



(1 P c min 5 D 
x 1 b -  (49 1 

is also shown. This result is a special case ( M  = 2 )  of the more general 

result for uncoded MPSK, i.e., 

M-1 

A m=l 

2 A  2 where, rather than ( 4 7 ) ,  Sm = 4 sin nm/M;  m = 1, 2, ..., M is used in (46). 

A s  was done in Figure 6, the comparable results for coherent detection, 

as obtained from [l], are superimposed on this same figure. We observe that 

once again, over a large range of E I N  values (where the curves are 

approximately straight lines), the results for differential detection track 

- 

b O  

the coherent detection results with a fixed difference of about 1.5 dB for the 

coded cases and about 2 dB for the uncoded case. 

3 .  Another Example 

A s  another example, consider a rate 2/3 trellis coded asymmetric 8-PSK 

modulation again using a simple 2-state trellis. The appropriate set 

partitioning is illustrated in Figure 8,  the trellis diagram in Figure 9, and 

the pair-state transition diagram in Figure 10. The performance of this 

system in the absence of fading and with coherent detection was also treated 

I 
1 

in [9] with the following results: 

19 



2(al + a2) c 
1 - 2 b  ' T(D,I) = 2d + 

~ 

20 

2 2 2 

al - - 1 2 p I2 + D65 c =; [,66 (I + 111 
- 

The set of squared distances from signal point 0 to signal point j = 

1,2,3,. . . , 7 ,  denoted by 6j , are given by 2 

6: = 2; 2 66 = 2 

63 = 4 sin2 (t + t) = 2 (1 + sin $); 6: = 4 sin2 (: - $= 2 (1 - sin $1 

(52) 2 64  = 4 

Applying (34) to (51) gives the upper bound 

min I 64 D D + -  'b'$ 2 
(53) 

For differential detection in the presence of Rician fading, the transfer 

function of (51) still applies with, however, D 'i replaced by SiD 'i ; 

i = 1 , 2 ,  ..., 7 where Si and Si are defined i n  (46) with ib replaced by Es = 2 5 ,  

2 

- - 



2 but the fii's are now given by (52 ) .  

in (34), and recalling that we must now also minimize over the Chernoff 

parameter X as well as the asymmetry angle 4 ,  we get (53) with the same 

replacement as above, namely, 

Performing the differentiation required 

min 
X,O 'b 5 

min 
Q 

1 
2 
- + 

Figure 11 is a plot of (54) versus Eb/No for a Rician parameter K = 10. 

Also shown are the results for the symmetric signal set obtained by setting 

4 = 6/4. Finally, the upper bound on the performance of uncoded QPSK in 

the same environment is determined from ( 5 0 )  with M=4. 

(54) 

A s  before, the comparable results for coherent detection are superimposed 

on this same figure. These results are obtained from the analysis performed 

in [ l ]  and as such are given by (54) with Ci and qi defined as follows: 

d1 + K 1 

2 with Si ; i = 1,2,...,7 given by (52) .  

Although not as obvious in Figure 7, we observe that, except for the 

possibility of a proportionality constant, the bit error probability 

performances of the differentially coherent and the coherent detection schemes 
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approach each other asymptotically as E / N  

see this better, Figure 12 superimposes the symmetric results of Figures 7 and 

11 on a single grid at the same time extending them t o  a broader range of 

Eb/No. It is also interesting to observe from Figure 12 that the rate of 

decrease of P with E IN 

coded 4DPSK (or 4PSK) case than for the rate 2/3 trellis coded 8DPSK (or 8PSK) 

case. 

gets sufficently large. To b O  

is much steeper for the rate 112 trellis b b O  

Similar observations can be made for the Rayleigh fading case (see Figures 13 

and 14). In  fact, here it is relatively simple to analytically demonstrate 

these behaviors. For symmetric rate 112 trellis coded 4DPSK in a Rayleigh 

fading environment, we have already shown that Eq. (41) is an upper bound on 

its bit error probability performance. Substituting (30) in ( 4 1 )  and letting 

E /N become large give the asymptotic upper bound b O  

A similar asymp 

[ l ]  and is given by 

Dtic result for the case 

2 

16(Eb/N0I2 

9e 
P L  

f coher nt detection as obtained in 

(56b 1 

For the symmetric rate 213 trellis coded 8DPSK, it is straightforward to show 

that both the coherent and differentially coherent bit error probabilities 

vary inversely with E /N 2 - - 
[as opposed to (Eb/NO) 1 .  b O  
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The specific results of ( 5 6 )  and the statement that follows can be 

generalized in terms of an upper bound on P 

n/(n+l) and the number of points in the signal constellation (i.e., M) of the 

form Pb 5 Ko(Eb/No)'L. 

between the exponent L and the distance structure of the error event paths in 

the trellis diagram. 

for arbitrary code rate b' 

- 
We now investigate the interesting relationship 

To begin the investigation, consider the asymptotic behavior (large 

i$,/NO) of the pair-wise error probability for the Rayleigh channel. 

can be obtained by substituting ( 3 0 )  in ( 2 9 )  and letting E /N 

This 

become 
s o  

large with the result 

where Q - < N is the dimensionality of the set q i.e., the number of MPSK 

symbols in the length N sequence 5 for which x # x , and Bs is related 
to &, as discussed before. 

A 

n n 

Now, since, from (31)' the upper bound on Pb is 

a weighted sum of pair-wise error probabilities over all error event paths in 

the trellis diagram, then as Eb/NO becomes large, the dominant term in the 

sum will be that corresponding to the smallest exponent of E /N 
length of the shortest error event path in the trellis diagram. Thus, as 

mentioned above, asymptotically as &,/NO gets large, E-, is approximately 
upper bounded by Ko(ib/Nol-L where L is determined from the shortest 

i.e., the b 0' 

error event path in the trellis diagram and K is determined from the product 0 

of the branch distances associated with this path, as well as the free distance 

of the code. 
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This is an interesting conclusion which has the following implications. 

First of all, it points out that the design of trellis coded MPSK modulations 

to be transmitted over the Rayleigh fading channel and differentially detected 

at the receiver should be guided primarily by maximizing the length of the 

shortest error event path (resulting in the steepest descent of P b 
E /N ) and the product of the branch distances on this path, with 

maximizing the squared free Euclidean distance as a secondary consideration. 

As the channel statistics tend more to a Rician channel (i.e., a strong 

line-of-sight component is present), the design of the code should be guided 

by both the length and branch distance product of the shortest error event 

path and the squared free Euclidean distance. 

disappears, resulting in an AWGN channel, the criterion for good trellis code 

design becomes once again only the squared free Euclidean distance as 

suggested by Ungerboeck [51. 

with 
- 
b O  

Finally, as the fading 

An interesting side result stemming from the above is that, for trellis 

codes with parallel paths between states (i.e., the length of the shortest 

error event path is unity), the asymptotic performance of these codes on the 

Rayleigh channel varies inversely as E / N  

by the numerical results in Figure 13 which correspond to the trellis diagram 

of Figure 9. 

shortest error event path has length two (see Figure 4 ) .  Thus, P varies 

inversely with the square of E /N 

analytical result in Eq. (56a). 

This result is corroborated b 0'  

Also, note that for the rate 1/2 trellis coded QPSK case, the 

b 

as demonstrated in Figure 6 and the b O  

Finally, it can be shown, from the coherent detection results in [l], 

with E /N b b O  that the asymptotic behavior of P 

0' above, the only difference being in the proportionality constant K 

Similar asymptotic behavior can be demonstrated for Rician channels, the 

varies identically as the 
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primary difference being an additional attenuation factor exp(-LK). 

complete discussion of the design and asymptotic behavior of conventional and 

multiple trellis codes [ll] on fading channels, both for coherent and 

differentially coherent detection, will appear in a future report by the 

authors [12]. 

A more 

B. Ideal Channel State Information 

Consider now the case where ideal channel state information is available 

at the receiver. This is tantamount to assuming that the receiver has 

absolute knowledge of the fading amplitude p in each symbol interval. In 

this case, the Gaussian decoding metric becomes 

instead of (11). Following steps similar to (16) - ( 2 4 1 ,  the conditional 

pair-wise error probability analogous to 25 is given by 

Unfortunately, even for the Rayleigh case, the average of ( 5 8 )  over the p.d.f. 

of e cannot be accomplished in closed form, much less the minimization over 
the Chernoff parameter or optimization over the signal set asymmetry. More 

serious than this, however, is the fact that the condition on the determinant 

of I + 2X'G*G given in the statement following Eq. (22) is not satisfied for 
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all values of p in the region ((),a). A s  such, the denominator of any 

term on the right hand side of (58) is not always positive and thus averaging 

(58) over a Rayleigh or Rice distribution is not  valid. In view of this, the 

upper bounding approach discussed thus far must be abandoned for the ideal 

channel state information case. 

Computer simulation of the two examples in the previous section including 

ideal channel state information revealed that little was to be gained over the 

no channel state information case. The reason for this is perhaps tied t o  the 

suboptimality of the Gaussian metric since, in the case of coherent detection 

(where the Gaussian metric is optimum), a reasonably significant gain was 

achieved. Because of the above analytical difficulties and the potential lack 

of gain as evidenced by the computer simulations, we shall not pursue the 

channel state information case any further. 

n 

VI. Simulation Results 

In this section, we describe and present the results of a software 

simulation of the system block diagram of Figure 1. The development of a 

simulation has a manyfold purpose. First, note that the simulation is 

indicative of the exact system performance whereas the theoretical bit error 

rate expressions are upper bounds. Second, when the number of states in the 

trellis diagram becomes large (e.g., 16), determining the state transition 

diagram and its associated transfer function is a tedious task; in such cases, 

simulation is the more expedient approach. Finally, system degradation due to 

the finite size of the interleaverldeinterleaver and decoder buffer imposed by 

the practical constraint on the allowable total delay is analytically 

intractable. Hence, to predict true system performance corresponding to the 

real world environment, one must again turn to simulation. In the next 

paragraph, we expand upon the last of these issues. 
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The block interleaver of Figure 1 can be regarded as a buffer with d rows 

which represent the depth of interleaving and s columns which represent the 

-. Thus, the size of the interleaver (in symbols) is 

d x s. Data is written into the buffer in successive rows and read out of the 

buffer (the order in which it is transmitted over the channel) in columns. At 

the receiver, the block deinterleaver performs the reverse operation, i.e., 

the received soft quantized symbols are written into the buffer in successive 

columns and read out in rows. In practice, the interleaving depth should be 

chosen on the order of the maximum fade depth anticipated which, for the 

fading mobile satellite channel under investigation, depends on the doppler 

frequency or, equivalently, the vehicle speed: the smaller the doppler 

frequency, the longer the fade duration and vice versa. 

should be chosen on the order of the decoder buffer size. When this is done, 

the performance degradation (relative to that for the analytically tractable 

assumption of infinite interleaving depth and buffer size) will be inversely 

proportional to the product of interleaving size and doppler frequency. 

The interleaving span 

On the other hand, the performance of the differential detector will 

degrade directly proportionally to doppler frequency. The reason for this is 

that the fading phase process varies more rapidly. Assuming infinite 

interleaving and decoder buffer size, one can use the same analytical approach 

as previously discussed to derive upper bounds on the bit error probability. 

Example: Here we consider the more practical case of a rate 2 1 3 ,  

16-state trellis code combined with symmetric 8PSK modulation (it was shown in 

[9] that, for this case, the additional coding gain produced by the addition 

of asymmetry to the modulation is small and thus we have chosen to ignore 

it.) 

interleaving and buffer size, this system can be analyzed by the approach 

Although, with much computational effort and the assumption of infinite 
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taken in the previous section, our interest here lies in computing the 

performance with limited interleaving and decoder buffer size as follows. 

At the present time, this system is a candidate for NASA's Mobile 

Satellite Experiment (MSAT-X) project at L-band whose objective is to transmit 

4800 bps of digitally encoded speech over a 5-kHz RF channel with a bit error 

rate of 

allowable delay, the interleaving size, interleaving depth, and decoder buffer 

size have been optimized at this bit error rate to achieve the minimum bit 

signal-to-noise ratio. For the specified delay constraint (60 ms), the size 

of the block interleaver and deinterleaver have been chosen equal to 128 8PSK 

symbols (or 256 input bits). With the above chosen interleaving size, the 

interleaving depth has been optimized by computer simulation and found to be 

equal to 16 symbols. Thus, the interleaving span is 128/16 = 8 symbols over 

the range of doppler frequencies from 40 Hz to 200 Hz (vehicle speeds of 

15  mph to 75 mph at L-band). Note, however, that for MSAT-X channels 

operating at low doppler frequencies such as 40 Hz, we can indeed have fade 

durations much longer than 16 symbols. In this case, an interleaving size of 

128 symbols is not sufficient, thus a significant performance penalty can 

occur. Finally, with the above delay constraint imposed, the buffer size was 

optimized through simulation and found to be 32 symbols (or 64 bits). 

To satisfy the previously mentioned constraint on total 

Figure 15 illustrates the results of the simulation for perfect doppler 

tracking and time synchronization, and no intersymbol interference (ISI). In 

particular, Figure 15 assumes a fixed doppler frequency of 400 Hz, a fixed 

Rician parameter K = 10, and the two cases of no interleaving and limited 

interleaving as described above. Also shown are the corresponding results for 

no fading, i.e., K = From these results, it is clear that a large 

performance penalty is paid when interleaving is not used. Quantitatively 
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speaking, at a bit error rate of 

1.5 dB worse than that under ideal conditions (i.e., no fading). 

interleaving, one must pay an additional 2.5 dB in average bit energy-to-noise 

ratio. 

the performance with interleaving is 

Without 
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Appendix A 

Derivation of The Maximum-Likelihood Branch 

Metric for Coded MDPSK with Perfect Side Information 

* 
Referring to (5), we write wk and w in rectangular complex k+l 

notation as 

* * -  * 
wk 4 %J2Es e-j'k + Nk = V1 + jV, 

W A  4Es e j(4k+A4k+l)+ N ~ + ~  = u1 + ju2 
k+l = %+l 

1' v2' where U U are independent Gaussian random variables as are V 

Furthermore U and U are independent of V and V2. The detector output, 

'k+l' 

and w which, in view of (A-11, can be written as 

1' 2 

1 2 1 
* 
k in the k+lst transmission interval is given by the product of w 

k+l 

* 
y A w w  = ( U V  - U V ) + j ( U V  + U V )  

k + l  = k k + l  1 1  2 2  1 2  2 1  

A = Y1 + jY2 

The joint characteristic function of Yy and Y2 is 

j ~ ~ l ~ 1 + w 2 ~ 2 ~ ~ 1 + ~ w 2 ~ 1 ~ J 1 ~ 2  )U21 

which because of the independence between U1 and Ug becomes 

3 1  

(A-3a )  

(A-3b ) 



Since for a Gaussian random variable X with mean 2 and variance u2 X’ we have 

(A-4) 

then applying ( A - 4 )  to each expectation in the product inside the braces of 

(A-3b) gives upon simplification 

2 2 2 2  j(w 0 +w ti )V -U (w1+w2)V1/2 1 1  2 2  1 = e  

2 2 2 2  
j ( o  2 1  0 -u 1 2  ti )V 2 -U (wl+w2)V2/2 

x e  

where u2 denotes the variance of U1 and U2 (or V1 and V2). 

Finally, using the relation 

(A-5) 

(A-6 

to evalute the expectations over V and V2 required in (A-3b), we get after 1 

much simplification 
2 

1 2jf 1 1 2  (w ,w - o f2(wl,w2)) 
(w1,w2) = 

4 2 2 exp [ 2[1 + u 4 2  (wl + w2)l 2 1 + 0 (wl + w,) 
(A-7a) 

where 

(A-7b) 
f (w ,w ) = (0; + w2)(U1 2 -2 + ti; + q2+ v,) -2 
2 1 2  

The next step is to perform the inverse Fourier transform of (A-7a) 

thereby obtaining the joint probability density function of Y 1 and Y2. In  

particular, 
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c o c o  

Making the change of variables 

w1 = R cos e 

w = R sin 8 2 

and performing the integrations gives after some simplification 

where 

a 2 R 2 (U1 -2 + $ + V; + 
R 

2n(l + u R ) 4 2 exp 1- 
2(1 + u4R2) 

W(R) = 

B(R) = U l V 2  + U2Vl - y2(1 + u 4 2  R ) 

Finally, recognizing from (7) and ( A - 1 )  that 

2 Ulvl - U2V2 = 2E p s k+l 'Os "k+l 

u + u = 2Espk+l 2 sin A+k+l 
1 2  2 1  

-2 -2 -2 -2 2 U + U + V1 + V2 
= 4Espk+l , 

where we have made the assumption that p 

1 2 

is constant over two symbol k 
n - L then (A-10) together with (A-11) becomes 

'kPk+1 - 'k+l' intervals, i.e., 
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(A-9 1 

(A-10)  

( A - 1 1 )  

(A-12) 



1- 4 2  2Es ( l + o R )  I R 
PYl 'Y2 (Y1'Y2) = i 2 w ( 1  + CI 4 R 2 exp 

0 

S 2 
2EsPk+l 'Os A4k+l 

4 2  JO(+ - l + o R  

2 

2EsPk+l sin 4 2  "k+l) ')] dR 
+ (y2 - l + o R  

(A-13) 

If we now evaluate the variance u2 from the noise statistics in (61, we find 
2 that u = No. Also recognizing from ( 3 )  that Re{x.,+l} = cos A4k+l  and 

= sin then (A-13) can be put in the final desired form, 

W 

2 2  1 + NOR x exp 1- 1 + NOR 2 2  

(A-14) 
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Figure 2. General Memoryless Channel 
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x1 x2 00 10 01 1 1  

Figure 3. Set Partitioning of Asymmetric 4-PSK 

37 



Figure 4. Trellis Diagram and MPSK Signal 
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4ac 
1 -2b 

T (D,z) = 
2 4  
2 a =  - D  

1 l+a  
2 C =  - D 

Figure 5. Pair-State Transition Diagram for Trellis Diagram of 
Figure 4 
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Figure 6. Bit Error Probability Performance of Rate 1/2 Trellis Coded 
4-PSK in the Presence of Rayleigh Fading; 2 States, K = 0; 
No Channel State Information 
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Figure 7. Bit Error Probability Performance of Rate 1/2 Trellis Coded 
4-PSK in the Presence of Rician Fading; 2 States, K = 10; 
No Channel State Information 
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Figure 9. 2-State Trellis Diagram and Signal Assignment f o r  8-PSK 
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b = 4 [ D 6 7  2 Z +  D 63222] 

c = 3 [DS6 (Z + l)] 

d = +[D64 z] 
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Figure 10. Pair-State Transition Diagram for Rate 2/3 Trellis Code 

I 
44 

d 



m 
-0 

z 
IW 

0 

n \ 

45 



n 
0 

10-2 

10-2 

1 O-L 

1 0- 
5' 

Figure 12. Bit Error Probability Performance of Rate 
8-PSK in the Presence of Rician Fading; 2 
Channel State Information 
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Figure 13. Bit Error Probability Performance of Rate 2/3 Trellis Coded 
8-PSK in the Presence of Rayleigh Fading; 2 State, K = 10; 
No Channel State Information 
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